Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Amino-5-bromo-2-iodopyridine

Kevin D. Bunker, ${ }^{\text {a }}$ Neal W. Sach, ${ }^{\text {a }}$ Seiji Nukui, ${ }^{\text {a }}$ Arnold L. Rheingold ${ }^{\text {b }}$ and Alex Yanovsky ${ }^{\text {a * }}$

${ }^{\text {a }}$ Pfizer Global Research and Development, La Jolla Laboratories, 10614 Science Center Drive, San Diego, CA 92122, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
Correspondence e-mail: alex.yanovsky@pfizer.com
Received 27 November 2008; accepted 1 December 2008
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; R factor $=0.032 ; w R$ factor $=0.082$; data-to-parameter ratio $=15.3$.

The reaction of 3-amino-5-bromopyridine with N-iodosuccinimide in the presence of acetic acid produces the title compound, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{BrIN}$, with an iodo substituent in position 2 of the pyridine ring. The crystal structure features rather weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds linking the molecules into chains along the z axis of the crystal.

Related literature

For structures of ortho-iodoanilines, see: McWilliam et al. (2001); Sandor \& Foxman (2000); Parkin et al. (2005).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{BrIN}_{2}$

$$
\begin{aligned}
& \text { Monoclinic, } P 2_{1} / c \\
& a=4.0983(12) ~
\end{aligned}
$$

$$
\begin{aligned}
& b=15.172(4) \AA \\
& c=12.038(3) \AA \\
& \beta=90.152(5)^{\circ} \\
& V=748.5(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker APEXII CCD

 diffractometerAbsorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.234, T_{\text {max }}=0.557$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$	82 parameters
$w R\left(F^{2}\right)=0.082$	H-atom parameters constrained
$S=1.05$	$\Delta \rho_{\max }=1.33 \mathrm{e} \AA^{-3}$
1251 reflections	$\Delta \rho_{\min }=-0.92 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.88	2.16	$3.025(8)$	166
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{I} 1$	0.88	2.79	$3.259(5)$	115

Symmetry code: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2275).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
McWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. \& Glidewell, C. (2001). Acta Cryst. C57, 942-945.

Parkin, A., Spanswick, C. K., Pulham, C. R. \& Wilson, C. C. (2005). Acta Cryst. E61, o1087-o1089.
Sandor, R. B. \& Foxman, B. M. (2000). Tetrahedron, 56, 6805-6812.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o28 [doi:10.1107/S1600536808040452]

3-Amino-5-bromo-2-iodopyridine

K. D. Bunker, N. W. Sach, S. Nukui, A. L. Rheingold and A. Yanovsky

Comment

The reaction of 5-bromo-3-aminopyridine with N -iodosuccinimide in the presence of acetic acid leads to iodo-substitution at position 2 of the pyridine ring, as shown by the X-ray study of the title compound (Fig. 1). To the best of our knowledge, this is the first structure of ortho-iodoaminopyridine derivative. The N2 $\cdots \mathrm{I} 1$ distance 3.259 (5) \AA is typical for ortho-iodoanilines (McWilliam et al., 2001; Sandor \& Foxman, 2000; Parkin et al., 2005) and may suggest involvement of the H2B atom in weak intramolecular N2—H2B‥I1 interaction (Table 1).

The second `active' H -atom, H 2 A , participates in the intermolecular H -bond $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~N} 1^{\mathrm{i}}$ (symmetry code (i): $x, 1 / 2$ $-y, z-1 / 2$; Table 1), which links the molecules into the chains along the z-axis of the crystal (Fig. 2). There are no strong halogen \cdots halogen interactions in the structure; the shortest intermolecular $\mathrm{I} \cdots \mathrm{I}$ distances are 4.091 (1) \AA and 4.098 (1) \AA.

Experimental

To a solution of 3-amino-5-bromopyridine ($100 \mathrm{mg}, 0.56 \mathrm{mmol}$) in acetic acid ($0.1 \mathrm{M}, 5.61 \mathrm{ml}$) was added N -iodosuccinimide $(133 \mathrm{mg}, 0.56 \mathrm{mmol})$ at rt . After 3 h , the reaction was quenched with sat. sodium bicarbonate and extracted 3 times with EtOAc. The organic layers were combined, dried, filtered, and concentrated. The crude residue was subjected to flash chromatography (silica gel, $0-50 \%$ EtOAc/heptane). Isolated 93 mg (55\%) of 3-amino-5-bromo-2-iodopyridine, as a brown solid. X-ray quality crystals were obtained by slow evaporation of a concentrated chromatography fraction (approx. 30\% EtOAc/heptane). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) (δ p.p.m.) $5.65(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=2.27 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) (δ p.p.m.) 106.10, 120.01, 120.92, 137.97, 147.68.

Refinement

All H atoms were treated as riding with the $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances of $0.95 \AA$ and $0.88 \AA$ respectively; the $U_{\text {iso }}(\mathrm{H})$ were set to $1.2 U_{\text {eq }}$ of the carrying atom.

Figures

supplementary materials

Fig. 2. The crystal packing diagram viewed down the x-axis.

3-Amino-5-bromo-2-iodopyridine

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{BrIN}_{2}$
$M_{r}=298.90$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=4.0983$ (12) \AA
$b=15.172(4) \AA$
$c=12.038(3) \AA$
$\beta=90.152(5)^{\circ}$
$V=748.5(3) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F_{000}=544 \\
& D_{\mathrm{x}}=2.652 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } K \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2536 \text { reflections } \\
& \theta=2.7-25.3^{\circ} \\
& \mu=9.53 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.40 \times 0.33 \times 0.04 \mathrm{~mm}
\end{aligned}
$$

1251 independent reflections
1086 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=25.3^{\circ}$
$\theta_{\text {min }}=2.2^{\circ}$
$h=-4 \rightarrow 1$
$k=-17 \rightarrow 18$
$l=-10 \rightarrow 14$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.037 P)^{2}+2.524 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=1.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.92$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
I1	$0.18405(10)$	$0.37509(3)$	$0.48761(3)$	$0.02516(17)$
Br1	$-0.56202(16)$	$0.01782(4)$	$0.28399(5)$	$0.0266(2)$
N2	$-0.0278(15)$	$0.3306(4)$	$0.2326(4)$	$0.0298(13)$
H2A	-0.0808	0.3282	0.1617	0.036^{*}
H2B	0.0760	0.3769	0.2589	0.036^{*}
N1	$-0.1133(14)$	$0.1994(4)$	$0.4858(4)$	$0.0264(13)$
C2	$-0.2684(18)$	$0.1278(4)$	$0.4470(6)$	$0.0264(15)$
H2	-0.3243	0.0815	0.4965	0.032^{*}
C1	$-0.0390(15)$	$0.2637(5)$	$0.4165(5)$	$0.0242(14)$
C5	$-0.1071(15)$	$0.2622(5)$	$0.3019(5)$	$0.0227(14)$
C3	$-0.3480(16)$	$0.1208(4)$	$0.3350(5)$	$0.0221(14)$
C4	$-0.2713(15)$	$0.1878(4)$	$0.2636(5)$	$0.0213(14)$
H4	-0.3303	0.1834	0.1874	0.026^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.0244(3)$	$0.0324(3)$	$0.0187(3)$	$-0.00094(16)$	$-0.00522(18)$	$-0.00340(17)$
Br1	$0.0285(4)$	$0.0274(4)$	$0.0238(4)$	$-0.0007(3)$	$-0.0039(3)$	$-0.0027(3)$
N 2	$0.044(4)$	$0.029(3)$	$0.016(3)$	$-0.002(3)$	$-0.008(3)$	$-0.001(2)$
N 1	$0.035(3)$	$0.030(3)$	$0.015(3)$	$0.002(2)$	$-0.005(2)$	$0.002(2)$
C 2	$0.035(4)$	$0.024(4)$	$0.020(3)$	$0.000(3)$	$-0.007(3)$	$0.002(3)$
C 1	$0.017(3)$	$0.036(4)$	$0.020(3)$	$0.004(3)$	$-0.006(3)$	$-0.008(3)$
C 5	$0.017(3)$	$0.035(4)$	$0.016(3)$	$0.006(3)$	$-0.001(2)$	$-0.002(3)$
C 3	$0.021(4)$	$0.027(4)$	$0.018(3)$	$0.005(3)$	$-0.001(3)$	$-0.001(3)$
C 4	$0.021(3)$	$0.033(4)$	$0.011(3)$	$0.007(3)$	$-0.005(2)$	$-0.006(3)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{I} 1-\mathrm{C} 1$	$2.102(7)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.390(9)$
$\mathrm{Br} 1-\mathrm{C} 3$	$1.894(7)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9500

supplementary materials

$\mathrm{N} 2-\mathrm{C} 5$	$1.371(9)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	0.8800
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~B}$	0.8800
$\mathrm{~N} 1-\mathrm{C} 1$	$1.320(9)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.342(9)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.0
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$119.3(5)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.6(6)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2$	119.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.7
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 5$	$124.2(6)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{I} 1$	$116.0(4)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{I} 1$	$119.8(5)$

$\mathrm{C} 1-\mathrm{C} 5$	$1.407(9)$
$\mathrm{C} 5-\mathrm{C} 4$	$1.393(9)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.368(9)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{~N} 2-\mathrm{C} 5-\mathrm{C} 4$	$121.8(5)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 1$	$122.6(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$	$115.6(6)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.9(6)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 1$	$121.1(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$	$119.0(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.4(6)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.8
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.8

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.88	2.16	$3.025(8)$	166
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{I} 1$	0.88	2.79	$3.259(5)$	115

Symmetry codes: (i) $x,-y+1 / 2, z-1 / 2$.

Fig. 1

supplementary materials

Fig. 2

